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Time-Dependent Perturbation Theory

We have seen that problems with no exact solution can often be
approximately solved by separating the Hamiltonian into

Ĥ = Ĥ0 + �Ĥ 0

and approximating the full energies and wave functions using the
matrix elements of Ĥ 0 in the basis of Ĥ0 eigenstates, assuming
Ĥ 0 is independent of time.

What if Ĥ 0 is time-dependent? For example, Ĥ 0 ⇠ cos(!t), etc.?

We can construct a time-dependent perturbation theory to
describe this situation.
Suppose that the time-independent portion Ĥ0 has known

eigenstates |�(0)n i and energies E(0)
n .

Suppose further that the time-dependent perturbation
Ĥ 0(t) is turned on at time t = 0.
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Time-Dependent Coe�cients of the State

At time t = 0 the state of the system is

| (0)i =
X

n

|�(0)n i h�(0)n | (0)i =
X

n

cn(t = 0) |�(0)n i

At some later time t, the exact state of the system is

| (t)i =
X

n

cn(t)e
�iE

(0)
n t/~ |�(0)n i

cn(t) contains all time dependence due to the perturbation.
If Ĥ 0 = 0, cn(t) = cn(t = 0) is time independent.

The probability that the system will be in state n at time t
is given by Pn(t) = |cn(t)|2.
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Time-Dependent Coe�cients of the State cont’ed

The exact state | i is a solution of

Ĥ | (t)i = (Ĥ0 + �Ĥ 0) | (t)i = i~ d

dt
| (t)i

Substituting we obtain

X

n

cn(t)e
�iE

(0)
n t/~E(0)

n |�(0)n i+ �
X

n

cn(t)e
�iE

(0)
n t/~Ĥ 0 |�(0)n i =

i~
X

n

ċn(t)e
�iE

(0)
n t/~ |�(0)n i+

X

n

cn(t)E
(0)
n e�iE

(0)
n t/~ |�(0)n i

where ċn(t) =
d

dt
cn(t).
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Time-Dependent Coe�cients of the State cont’ed

Taking the inner product with h�(0)f |, we find

�
X

n

cn(t)e
�iE

(0)
n t/~ h�(0)f |Ĥ 0|�(0)n i = i~ċf (t)e�iE

(0)
f t/~

This implies

i~ċf (t) = �
X

n

cn(t)e
�i(E

(0)
n �E

(0)
f )t/~H 0

fn

where H 0
fn = h�(0)f |Ĥ 0(t)|�(0)n i.
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Expanding in Powers of �

As before, let’s expand cf (t) = c
(0)
f + �c

(1)
f + �2c

(2)
f + . . . in

powers of the perturbation.
We substitute into above and equate equal powers of � to
obtain the coupled equations

i~ċ(0)f = 0

i~ċ(1)f =
X

n

e�i!nf tH 0
fnc

(0)
n

i~ċ(2)f =
X

n

e�i!nf tH 0
fnc

(1)
n

...

where !nf = (E(0)
n � E

(0)
f )/~.
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First Order in �

We are mostly interested in the case where the system starts o↵

at t = 0 in a definite eigenstate |�(0)i i of Ĥ0 , i.e., cf (t = 0) = �fi.

For the first order term, we can integrate i~ċ(1)f = e�i!if tH 0
fi:

c
(1)
f (t) = c

(1)
f (t = 0)� i

~

tZ

0

e�i!if t
0
H 0

fi(t
0)dt0

Then, up to first order in the interaction � (which we now set
equal to 1),

cf (t) = �fi �
i

~

tZ

0

e�i!if t
0
H 0

fi(t
0)dt0
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Probability of Transitions

If Ĥ 0 can be factorized into time-independent and -dependent
parts Ĥ 0 = V̂ (~r)F(t) (which is usually the case), then for f 6= i

cf (t) = � i

~Vfi

tZ

0

e�i!if t
0
F(t0)dt0

The probability of starting in state i and being observed in state
f to first order is

Pif = |cf |2 =
|Vfi|2

~2

������

tZ

0

e�i!if t
0
F(t0)dt0

������

2

Conventionally we write Vfi = h�(0)f |V̂ |�(0)i i as
hfinal state|interaction|initial statei
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Harmonic Perturbations

Consider the case

Ĥ 0(~r, t) =

(
0 for t < 0

2V̂ (~r) cos(!t) for t � 0

Then, to first order,

cf (t) = �fi �
i

~Vfi

tZ

0

e�i!if t0(ei!t
0
+ e�i!t0)dt0

= �fi �
1

~Vfi

"
ei(!fi�!)t � 1

!fi � !
+

ei(!fi+!)t � 1

!fi + !

#

where !fi = (E(0)
f � E

(0)
i )/~.
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Harmonic Perturbations cont’ed

If f 6= i we can rewrite this as

cf (t) = �2i

~ Vfi

"
ei(!fi�!)t/2

!fi � !
sin [(!fi � !)t/2]

+
ei(!fi+!)t/2

!fi + !
sin [(!fi + !)t/2]

#

There are two important scenarios where the driving frequency
comes into resonance with the energy di↵erence:

! ⇡ !fi. Then the first term in brackets dominates,

E
(0)
f > E

(0)
i , and the system is excited by the perturbation

to a higher energy state. This corresponds to absorption.

! ⇡ �!fi. Then the second term in brackets dominates,

E
(0)
i > E

(0)
f , and the system loses energy to the perturbing

field. This corresponds to stimulated emission.
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Absorption of the Perturbing Field

Let’s consider the absorption

case first where E
(0)
f > E

(0)
i , ! is

positive, and the first term
dominates in the expression for
cf (t).
Then the probability of a
“transition” from state i to f is

Pif = |cf (t)|2 =
4|Vfi|2

~2(!fi � !)2
sin2


(!fi � !)t

2

�
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Transitions via Absorption and Stimulated Emission

A very similar argument for stimulated emission may be
made, so the probability of transitions from state i to state
f in general is

Pif =
4|Vfi|2

~2(!fi ⌥ !)2
sin2


(!fi ⌥ !)t

2

�

where the minus signs correspond to absorption and the
plus signs to stimulated emission.

Note that the probability of absorption/emission is
“reversible” in the sense that the behavior is symmetric in
time.

If two discrete states |ii and |fi are resonantly coupled by
a harmonic, then the system oscillates between these states
in time.
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Time-Energy “Uncertainty Relation”

Note that at finite times

Pif =
4|Vfi|2

~2(!fi ⌥ !)2
sin2


(!fi ⌥ !)t

2

�

Within the time interval �t, states within the energy range

~|!fi ⌥ !| ⇠ 2⇡~
�t

are likely to be excited by the

perturbation.

Therefore after a given time �t the spread in the energies
likely to be observed is approximately �t�E ⇠ ~.
This is akin to an energy-time “uncertainty relation.” An
analysis studying the temporal evolution of expectation
values can yield �E�t � ~/2.
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Transitions within a Continuous Spectrum

What if instead of having discrete states |fi, there is a
continuum of final states |fi available, such that the
excited states are labeled by index f and lie within a
continuous band of energies Ef?
In such a case, rather than the probability that the system
will transition to a particular discrete eigenstate |fi, it is
more meaningful to consider the probability that we find
the system within a group of final states {|fi} whose
energies fall within a range 2� around Ef .
The probability is

Pif =

Z

f2{Ef±�}

| hf | (t)i |2df

=

Z

f2{Ef±�}

4|Vfi|2

~2(!fi ⌥ !)2
sin2


(!fi ⌥ !)t

2

�
df
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The Long Time Limit

Consider the behavior of the time
dependence as t ! 1 (the long time
limit). In practice this corresponds

to t � 1

!fi ⌥ !
.

It can be shown that

�(!) =
2

⇡
lim
t!1

sin2(!t/2)

!2t
For large times this allows us to write

lim
t!1

Pif = lim
t!1

Z

f2{Ef±�}

4|Vfi|2

~2(!fi ⌥ !)2
sin2


(!fi ⌥ !)t

2

�
df

=
2⇡t

~2

Z
|Vfi|2�(!f � !i ⌥ !)df
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Continuous Transition Rates: The Fermi Golden Rule

Often we are interested in the rate of transitions Rif rather than
the total probability. This allows us to write

Rif =
dPif

dt

=
2⇡

~

Z
|Vfi|2�(Ef � Ei ⌥ ~!)df

where we change the argument of the delta function from

frequency to energy by using
1

~�(x) = �(~x).
This equation is a version of the Fermi golden rule.

Note that the delta function enforces conservation of energy
during absorption/emission processes

Efi = E
(0)
f � E

(0)
i = ±~!

Efinal = Einitial ± ~!
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Fermi Golden Rule & Density of States

We use the Fermi golden rule to determine the rate at
which a system initially in an energy eigenstate |ii will
jump into a continuous range of eigenstates via absorption
or emission of an external harmonic field.

Note that in the Fermi golden rule we are integrating over
a range of final states |fi such that Ef = Ei ± ~!. In
general, if there are many states |fi with the same energy,
Vfi may be a function of f and the integration over f must
be performed explicitly.

However, in many cases the matrix elements Vfi may be
roughly constant as a function of f . In this case we are
primarily interested in how many states have energy E(f).
We can define a function called the density of states (DOS)
g(Ef ) such that df = g(Ef )dEf is the number of
eigenstates in the interval [Ef , Ef + dEf ].
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DOS and Fermi Golden Rule Redux

If the matrix element Vfi is indeed roughly constant, we
find

Rif '
2⇡|Vfi|2

~

Z
�(Ef � Ei ⌥ ~!)df

=
2⇡|Vfi|2

~

Z
�(Ef � Ei ⌥ ~!)g(Ef )dEf

=
2⇡|Vfi|2

~ g(Ei ± ~!)

This form of the Fermi golden rule is frequently used in
atomic physics and as a phenomenological tool for
estimating transition rates. Note the rate of transitions is
intuitively proportional to the strength of the perturbation
|Vfi|2 and the density of states for energies at which
transitions can be made.
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Comments on Time-Dependent Problems

If we consider a purely monochromatic field (⇠ cos(!t))
applied to a system with discrete eigenstates, the transition
probability Pif is time-reversible and typically oscillates in
time.

If we involve a continuous spectrum of states to which
transitions are possible, to first order and in the long time
limit, we should consider the transition rate Rif which is
given by the Fermi golden rule.

This rules imposes a form of energy conservation and can
explain linear absorption and (stimulated) emission
processes.

Though not proven here, it can be shown that if transitions
to a continuous spectrum of states are allowed, the
probability that the system remains in its initial state after
a time t is given by Pi = exp(�Rif t).
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Comments on Fermi Golden Rule cont’ed

This implies that Fermi golden rule-type transitions into a
continuum are not time reversible, i.e., the probability that the
system remains in the initial state will decrease continually with
time and will not recover via oscillations in time.

There is a qualitative di↵erence between truly discrete
monochromatic systems (time reversible with “recoverability” of
the initial state) and systems where transitions to a continuum
are possible (which lead to irreversible decay of the initial state).

The Fermi golden rule is a very useful tool in physics and
engineering to understand all kinds of linear e↵ects.

Nonlinear processes (such as two-photon absorption, etc.)
requires higher order perturbation terms (�2, etc).
The perturbative field Ĥ 0 we couple to is implicitly
semiclassical. We need to consider a quantum field for
spontaneous emission.
The dynamics of the system when the field is first “turned
on” may be quite complex and require separate study.
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